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Abstract-This paper presents an approach to efficient real-

time fusion of multi-channel remote sensing data using 
sparseness generated by wavelet transform. The experimental 
data used is from the SSM/I (Special Sensor Microwave/Imager) 
instrument. Starting with a general Bayesian estimation 
formulation of the problem to generate an enhanced resolution 
field we apply a wavelet transform that yields a reduction in 
computation costs without compromising on quality of fused 
data. The approach hinges on preconditioning the required field 
into having white statistics. We subsequently apply filters to the 
input channels to cast them in a common basis where they may 
be combined by simple addition of coefficients. The 
reconditioning of this data produces the ultimately desired field. 

 
I. INTRODUCTION 

 
In [5] we have introduced a Bayesian estimation approach 

to data fusion of multiple channels of SSM/I instruments [3]. 
We emphasized the application of a pre conditioning 
whitening transform that led to a simplified choice of a 
wavelet transform with a resulting sparseness of 
representation. Mathematically, Eq. (1) represents the 
solution to  Bayesian estimation  with  X denoting the 
underlying field being estimated, G, the Gain of the 
measurement antenna, and Y denoting the observed 
measurements, and P and R representing  the covariance 
matrices of X and measurement error E respectively. 
Applying the whitening and wavelet transforms yields 
Equation (2) for estimation, where Xl = WlFWX, Gl = GFW

-

1W1
T, P=AAT (where A is a full rank Upper Triangular 

matrix) and FW = A-1. 
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W1 is the 2D Haar wavelet transform which preserved   the 

low frequency portion of the level-1 decomposition. This 
yields  tremendous storage savings due to the compact 
representation. In this paper we propose a generalization of 
this technique to any multispectral data with appropriate 
assumptions on the statistics and data  formatting pertaining 
to the instrument of interest. We also show a real-time 
implementation for the above formulation for data from two 
channels of the SSM/I instrument that is based on filtering 
each of the input channels individually to generate data in a 

common basis where fusion is accomplished by addition of 
coefficients. 

II. STATISTICAL ANALYSIS AND FORMULATION 
 

Every input channel for an instrument will correspond to 
data from a 2 dimensional grid and the first step in the 
formulation is to vectorize the input data into a 1-D column 
vector, i.e. Y1=Vec[2D channel-1 data]. We carry out simple 
vectorization and append various channel data to the same 
column vector data as Y=[Y1, Y2, …]T where Y1, Y2… are 
the vectorized measurements of each channel. At the same 
time we need an assumption on the fineness of the field to be 
estimated i.e. X. This should be based on desired resolution 
and achievability based on spatial dependencies in the input 
data. In general, the greater the spatial dependencies (overlap) 
in the input data the more resolved should be the grid of the 
estimated data. For our experiments with the SSM/I data we 
used a grid finer by 4 times in each dimension than the finest 
input data available (85GHz [3]). 

To model the antenna gain operator G the actual antenna 
gain pattern should be taken into consideration. For the 
SSM/I instrument we found that a jointly binomial gain 
pattern over the channel footprints was a sufficiently accurate 
model. Suitably formatting the gain matrix for multiple 
channels and vectorized data yield the mathematical operator 
G. 

We then need to empirically estimate the a priori 
covariance matrices P and R of the field X and the error in 
measurement E respectively. Here we lay emphasis on 
measurement of covariance statistics for a row of pixels to be 
estimated and corresponding generation of P using 
assumptions of isotropy. For the SSM/I instrument we were 
able to fit the empirical statistics to an exponential model (3) 
[5]. The model is subsequently used to generate the 
appropriately formatted matrix P as given by (4) for a swath 
width N in terms of the underlying pixels. 
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Even though, the method outlined here for determining P is 

specific to the SSM/I instrument, several key points may be 
generalized. For any given instrument, the corresponding 
process would involve the following steps: 
 Observe characteristics of sample data to determine what 

input channel(s) provide statistical data that is closest to 
the underlying field and thus has minimum overlap. 

 Apply statistical modifications (e.g. local mean removal) 
to selected data to guarantee the imposed assumptions of 
stationarity. 

 Compute the covariance matrix for the relevant input 
data points. 

 If possible, fit this covariance matrix with a 
mathematical model. 

From the generated model, develop the final form that is 
adapted to the vectorized field with a specified swath length. 

The measurement error E in every channel is assumed to 
be zero mean additive white gaussian noise. Assuming non-
correlation and equal variance for one channel, the error 
covariance matrix is just σ2I for each of the channels, where σ 
is the standard deviation for measurement errors in that 
channel.  

We can have different error variances for different 
channels. Ideally, one would like to determine empirical 
estimates of the error variance for subsequent computations. 
In the absence of dependable empirical results we may 
however interpret the error variance as a weighting factor. In 
other words, by selecting higher error variance for a 
particular channel we are estimating our underlying field to a 
lesser extent from it. This turns out to be very useful in the 
SSM/I setting. Since, the lower resolution channels give us 
less accurate measurements then the higher ones, we might 
want to derive our estimation more from the higher resolution 
channels than the lower ones. This leads us to selecting σ4

2 > 
σ3

2 > σ2
2 > σ1

2 for 4 input channels with channel 1 being the 
one with highest resolution, where the terms are the 
measurement error variances of the respective channels. 

Note that this still does not provide us with an exact 
method to determine the individual channel measurement 
error variances, but merely imposes constraints. We thus have 
to empirically and a bit qualitatively select them. The final 
Covariance Matrix R is thus diagonal with elements of the 
diagonal being the variance of the measurement error for the 
channel that the measurement corresponds to, i.e.,  
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Note that all the zeros in the above matrix indicate that 

there is no correlation between measurement errors of various 
channels. Each of the individual error covariance matrices for 
individual channels contributing to the above matrix is 
different in size. This is due to the measured data for the 
underlying field, which depends on n that is the width of the 
local square patch under observation. 

III. REAL-TIME IMPLEMENTATION 

A. Input grid modification 
 We now proceed to develop a real-time 

implementation of the optimized estimation formulation. The 
focus of the work here is to develop a real-time 
implementation for the portion M = (I + Gl

T R-1 Gl)-1 Gl
T R-1 

in (2). The rest is already in the form of a cascade of the 
inverse wavelet and inverse whitening filters. There exists the 
possibility of simplification of M into de-correlation and 
combination blocks. The need for de-correlation of input 
channels arises from the fact that the intermediate quantity to 
be estimated is white, and the combination is just a 
restatement of fusion. 

 To visualize the intuition behind the following 
manipulations aimed towards achieving a real-time 
implementation, consider the matrix representation of M. The 
estimation of the intermediate quantity is then just a 
multiplication of the input with this matrix, i.e. Xl = MY and 
the final estimation is achieved by reconditioning this 
intermediate quantity, i.e. X = FW

-1 Wl
T X1. Fig. 1 shows the 

M matrix for input restricted to the 85V and 37V channels for 
the SSM/I case. (Note: Throughout this section we use the 

85V and 37V channels only for demonstrational purposes. 
Extension to other channels is straightforward.) 

 
The dimensions of the M matrix shown above are 400x125 

for 400 pixels to be estimated for a final field of 1600(40x40) 
pixels. The first 100 columns indicate operation on the 100 
input pixels from a 10x10 field in the 85V channel while the 
remaining 25 indicate operation on the 25 input pixels from a 
corresponding 5x5 field in the 37V channel. Thus, the first 
important conclusion is that we can separate the contributions 
to a pixel from various input channel as follows: 

 

 
Fig. 1. The M matrix 
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where M85, M37, … correspond to different channels. The 
estimation statement follows as: 
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This implies that the operators M85, M37, … can 

individually de-correlate the input channels, and the 
estimation of the intermediate preconditioned quantity is then 
just the addition of the corresponding coefficients for each 
pixel in the adopted wavelet basis. Let’s now consider the 
portion for the 85V channel first, i.e. the first 100 columns or 
M85. We notice a certain pattern here. Looking at sets of 10 
columns, each column in a set is a vertical shift of its 
adjoining column by 2 pixels and each set is a vertical shift of 
the adjoining column by 20 (2x(Swath width)) pixels (one 
swath is 10 pixels here, since we are estimating from a 10x10 
field of the 85V channel). It is now easy to see that our aim of 
developing a real-time implementation is realized if we carry 
out some input reformatting that makes every column a 
vertical shift of the adjoining column by one pixel, i.e. 
construct a matrix filter to achieve such shifts. This is easily 
most efficiently accomplished by effectively increasing the 
85V channel input sampling rater (to a higher resolution grid 

corresponding to the quantity to be estimated) by a systematic 
insertion of zeros. This is pictorially shown in Fig. 2. 

A similar grid modification is required for the 37V 
channel. Given its original lower sampling rate, more zeros 
are required for it as the 37V channel. With each M matrix as 
a separate filter for each channel, we have a bank of input 
filters. Let the input data be modified from Y85, Y37, … to 
Z85, Z37, … by the aforementioned technique. Now the 
matrices M85, M37, … become F85, F37, … 

 
....37378585l ++=∴ ZFZFX     

   
....37378585l +∗+∗=∴ ZfZfX  where *  denotes 

convolution (8) 

 
Thus, Xl is obtained by filtering Z85, Z37, … by the filters 

F85, F37, … and adding up the output coefficients. The 
simplification of the M matrix into a bank of filters thus 
completes the real-time implementation of the optimal 

estimator. 

B. MATLAB simulation experiment  
We now proceed to show the exact construction of the real-

time implementation. Fig. 3 shows the block diagram 
representation of such a system. It can easily be extended to 
include additional channels using a similar approach. On the 
left hand side is what might be called a bank of filters for the 
channels. An “input reformatting” block, which carries out 
the input grid modification as previously explained, precedes 
every channel filter. To construct a channel filter for say the 
85V channel, the first step is to obtain a column of the M85 
matrix, which defines the impulse response of the required 
filter. We can easily construct a Direct Form I FIR filter with 
the given coefficients of the impulse response. Even though 
the column length is 400 for our example, the number of 

 

  
 
Fig. 2. Pictorial representation of the input modification that leads to a 
representation of the matrix operator on the input as a filter 

 
Fig. 3. Block Diagram representation of the real-time implementation of the 
optimal estimator 



significant values in the impulse response is much smaller, 
and the resulting filter hence has a compact form. To make 
the filter independent of the swath width, we observe that the 
impulse response has significant values in sets of points 
equivalent to a swath width. The zero values coincide with 
the middle of any two consecutive sets. This is basically just 
indicative of the short and long-range dependence of the 
acquired data on the pixels in the underlying field. For our 
filter design to be valid for any swath width, we just need to 
insert zero points between the sets such that the width of the 
swath still corresponds to the size of the sets. This translates 
to adding extra delays dependent on swath width between 
parallel forward paths of the FIR filter. The outputs of the 
various channel filters are added after accounting for 
synchronization delays. The sum is then the conditional 
estimate of the field of interest. The inverse wavelet and “re-
coloring” filters applied to this sum yield the final estimate as 
shown on the right hand side of the block diagram. 

 
IV. CONCLUSION 

 
The challenges of efficient data fusion and resolution 

enhancement in satellite imaging have been the driving 
motivation for this work. We have proposed a real-time 
Bayesian estimation algorithm consistent with our goals. The 
evaluations and validations have been carried out on SSM/I 
data for which we have also developed empirical statistical 
models.  

In all, we have successfully shown the general approach of 
using compact wavelet representation to gain simplifications 
in re-configurable hardware for satellite based image 
processing. While, some of the assumptions specifically 
pertained to the SSM/I instrument, the proposed approach 
and methods are sufficiently generic to apply to multispectral 
remote sensing instruments and thus should prove to be 
useful. 

 
REFERENCES 

 

[1] Richard Sethmann, Barbara A. Burns, and Georg C. Heygster, “Spatial 
Resolution Improvement of SSM/I Data with Image Restoration 
Techniques,” IEEE Trans. Geosci. Remote Sensing, vol. 32, no. 6, pp. 
1144-1151, 1994. 

[2] David G. Long, and Douglas L. Daum, “Spatial Resolution Enhancement 
of SSM/I Data,” IEEE Trans. Geosci. Remote Sensing, vol. 36, no. 2, pp. 
407-417, 1998. 

[3] James P. Hollinger, James L. Pierce, and Gene A. Poe, “SSM/I 
Instrument Evaluation,” IEEE Trans. Geosci. Remote Sensing, vol. 28, no. 
5, pp. 781-790, 1990. 

[4] Wayne D. Robinson, Christian Kummerow, and William S. Olson, “A 
Technique for Enhancing and Matching the Resolution of Microwave 
Measurements from the SSM/I Instrument,” IEEE Trans. Geosci. Remote 
Sensing, vol. 30, no. 3, pp. 419-429, 1992. 

[5] V. K. Mehta, C. M. Hammock, P. W. Fieguth, H. Krim, “Data Fusion of 
SSM/I Channels using Multiresolution Wavelet Transform,” IEEE 
International Geoscience and Remote Sensing Symposium (IGARSS) 2002 

 

 

 

 
 
 
Fig. 4. Comparison of original input 85Ghz data with reconstructed 
estimation fusion result and geographical map for an area of interest. 


